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Correcting PCR amplification errors in 
unique molecular identifiers to generate 
accurate numbers of sequencing molecules

Jianfeng Sun    1, Martin Philpott1, Danson Loi    1, Shuang Li    2, 
Pablo Monteagudo-Mesas    2, Gabriela Hoffman3, Jonathan Robson    3, 
Neelam Mehta1, Vicki Gamble1, Tom Brown Jr 3, Tom Brown Sr 4, 
Stefan Canzar    5,6, Udo Oppermann1,7 & Adam P. Cribbs    1,7 

Unique molecular identifiers are random oligonucleotide sequences that 
remove PCR amplification biases. However, the impact that PCR associated 
sequencing errors have on the accuracy of generating absolute counts of 
RNA molecules is underappreciated. We show that PCR errors are a source 
of inaccuracy in both bulk and single-cell sequencing data, and synthesizing 
unique molecular identifiers using homotrimeric nucleotide blocks 
provides an error-correcting solution that allows absolute counting of 
sequenced molecules.

Unique molecular identifiers (UMIs)1 distinguish molecules in sequenc-
ing, enabling correction for biases in sampling and PCR amplification 
across next-generation and third-generation sequencing methods, 
including bulk RNA2,3, single-cell RNA4,5 and DNA approaches6–8. How-
ever, the accuracy of molecular quantification can be affected by the 
varying sequencing quality of different platforms9. Different sequenc-
ing platforms necessitate varied PCR cycling conditions, potentially 
introducing UMI errors that may result in inaccurate molecule counts 
(Supplementary Fig. 1). Unlike sample barcodes for multiplexing or 
cell barcodes in single-cell sequencing, which can be whitelisted due 
to a limited pool of barcodes10, UMIs cannot be corrected using this 
approach as their synthesis is random. Therefore, UMIs are often cor-
rected using computational approaches11, concatemeric consensus 
sequencing12 or by bespoke UMI designs13,14. Despite several compu-
tational approaches that leverage Hamming distances15,16, graph net-
works11,13 or thresholding on UMI frequency4, experimental validation 
of these solutions is lacking, with simulations indicating persistent UMI 
errors postcomputational demultiplexing13.

We reasoned that using homotrimer nucleotides to synthesize 
UMIs would simplify error detection and correction by using a ‘majority 

vote’ method (Fig. 1a and Supplementary Fig. 2). Our method labels RNA 
with homotrimeric UMIs at either end for enhanced error detection and 
indel tolerance, compatible with the ONT (Oxford Nanopore Technolo-
gies), PacBio or Illumina platforms (Fig. 1a,b). UMIs are processed by 
assessing trimer nucleotide similarity; errors are corrected by adopt-
ing the most frequent nucleotide in a majority vote approach (Fig. 1c).  
Our simulations reveal that a demultiplexing strategy incorporating 
homotrimers, along with a set coverage approach, outperforms the 
existing gold standard of monomer-based UMI-tools demultiplexing 
(Supplementary Fig. 3). By synergistically integrating homotrimeric 
correction and set coverage techniques, our method achieves a sub-
stantial improvement in the detection and recovery of simulated UMIs. 
This optimized performance exceeds the results obtained when relying 
solely on a homotrimer majority vote approach (Supplementary Fig. 4).

While sequencing simulations can offer valuable insights, their 
real-world applicability may be limited by biases. To validate our homo-
trimer UMI error correction approach, we conducted experiments 
using a common molecular identifier (CMI) attached to every captured 
RNA molecule (Supplementary Fig. 5). Having the same molecule 
attached to every RNA guarantees that, in the absence of errors, each 
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and 14). When we compared monomer UMI correction to our homo-
trimer correction methodology, we found differences in the number 
of differentially expressed genes and transcripts between splicing inhi-
bition and control conditions. Specifically, for genes and transcripts, 
we observed discordant rates of 7.8 and 11%, respectively (Fig. 1i–j and 
Supplementary Tables 2 and 3). The discordance rate indicates exclu-
sive gene or transcript regulation in one condition over another. More 
genes were differentially regulated after monomer UMI-tools correc-
tion than homotrimer correction, exemplified by read counts for TEL5 
and FRG2 genes postcorrection (Fig. 1k and Supplementary Fig. 15). In 
addition, the homotrimer correction approach led to an increased fold 
enrichment of genes associated with gene ontology terms related to 
DNA replication and splicing (Supplementary Fig. 16), highlighting the 
improved accuracy of our method in identifying biologically relevant 
gene sets. Additionally, we also observed 4.7% discordant differentially 
expressed genes between UMI-tools and homotrimer correction fol-
lowing Illumina sequencing (Supplementary Fig. 13c,d).

To understand the effect of PCR errors on single-cell sequencing 
accuracy, we used the 10X Chromium system with monomer UMIs to 
encapsulate JJN3 human and 5TGM1 mouse cells, followed by ten PCR 
cycles. Subsequently, we divided the PCR product into two portions 
and performed additional PCR amplification, resulting in a combined 
number of PCR cycles of 20 or 25. We then prepared and sequenced 
these libraries using ONT’s PromethION platform and after assigning 
cell barcodes (Fig. 2a) and filtering, clustering and annotating the cells 
(Fig. 2b), we observed that the library subjected to 25 cycles of PCR had 
a greater number of UMIs compared to the library that underwent 20 
PCR cycles (Fig. 2c and Supplementary Fig. 17). This suggests that PCR 
errors contribute to inaccurate counting of transcripts and an inflated 
UMI count. We next performed differential gene expression and iden-
tified 50 differentially expressed transcripts (Supplementary Tables 
4 and 5). For example, transcripts ENSMUST00000034966 (Fig. 2d; 
Rpl4, ribosomal protein L4) and ENST00000532223 (Fig. 2e; IGLL5, 
immunoglobulin lambda), were identified as significant (Padj < 0.05) 
in this differential expression analysis, highlighting the contribution 
of PCR errors to inaccurate transcript counting.

Next, we encapsulated JJN3 human and 5TGM1 mouse cells using 
Drop-seq20 with trimer barcoded beads, conducted reverse transcrip-
tion and template switching with a CMI and initiated ten PCR cycles. 
The PCR product was split into four aliquots for further amplification 
to 20, 25, 30 and 35 PCR cycles, respectively, before sequencing on the 
ONT Minion platform. Our results indicate a decrease in the percentage 
of reads with accurate CMIs as the number of PCR cycles increases. We 
show that homotrimer correction leads to 96–100% correction of CMI 
sequences (Fig. 2g and Supplementary Fig 18). This underscores the 
effectiveness of this approach in removing errors introduced by PCR. 
Subsequently, we sequenced the libraries that underwent 20 or 25 PCR 

transcript is only counted once. However, if errors are introduced into 
the CMI, transcripts will be overcounted. This provides a means for 
assessing the accuracy of library preparation and sequencing, as well as 
the impact of errors on the transcript counts (Supplementary Fig. 5b).

We attached the CMI to equimolar concentrations of mouse and 
human complementary DNA (cDNA) at the 3′ end, PCR amplified and 
then split the sample for sequencing on Illumina, PacBio or ONT plat-
forms. We calculated the Hamming distance between the observed 
and expected CMI sequence to measure sequencing accuracy. Our 
results show that 73.36, 68.08 and 89.95% of CMIs were correctly called 
using Illumina, PacBio and the latest kit14 ONT chemistry, respectively 
(Fig. 1d and Supplementary Figs. 6–8). Older ONT chemistry gave sub-
stantially lower accuracy (Supplementary Fig. 9), but the use of super 
accuracy base calling led to substantial improvements (Supplementary  
Fig. 10). Using our homotrimeric error correction approach, we were 
able to correctly call 98.45, 99.64 and 99.03% of CMIs for Illumina, 
PacBio and the latest ONT chemistry, respectively (Fig. 1d). We hypothe-
sized that the lower accuracy of Illumina and PacBio, when compared to 
ONT sequencing, may be due to the use of polymerases that are integral 
to the sequencing process (for example, bridge amplification17 and cir-
cular consensus sequencing18 with Illumina and PacBio, respectively). 
To discern sequencing and PCR errors, we amplified a CMI-tagged 
cDNA library with increasing PCR cycles and sequenced using ONT’s 
Minion. Trimer barcodes added during PCR allowed for batch effect 
minimization and independent sequencing accuracy assessment. 
High barcode accuracy was noted, with homotrimer correction offer-
ing negligible improvement (Fig. 1e). Based on these results, it can be 
inferred that sequencing errors make a negligible contribution to the 
overall error rate. However, we observed a substantial increase in the 
number of errors within our CMIs with increasing PCR cycles (Fig. 1f and 
Supplementary Fig. 11). Our homotrimer approach was able to correct 
a significant proportion of errors observed within the CMIs (Fig. 1g). 
This suggests that PCR can be a significant source of UMI error. We also 
benchmarked homotrimer error correction against both UMI-tools11 
and TRUmiCount19 and found substantial improvements in error cor-
rection (Fig. 1h and Supplementary Fig. 12). We observed minimal indel 
errors, suggesting that most errors were substitutions (Supplementary 
Fig. 12). It is important to highlight that monomer UMIs using Hamming 
distance, such as those in UMI-tools and TRUmiCount, cannot correct 
indel errors due to the potential for a single indel to inflate the Ham-
ming distance beyond correctability. Our methodology overcomes 
this by including indel correction.

We next conducted an experiment to correct PCR errors using 
homotrimers and treated Ewing’s RM82 sarcoma cells with a CLK1 
splicing kinase inhibitor. This induced splicing perturbations, allowing 
observation of an exaggerated differential transcript effect, followed 
by ONT or Illumina sequencing (Fig. 1i–l and Supplementary Figs. 13 

Fig. 1 | Enhanced accuracy in bulk mRNA sequencing using homotrimer 
UMI-based approach to mitigate PCR-induced errors. a, A schematic showing 
attachment of 3′ and 5′ UMIs to mRNA. b, A schematic showing the homotrimeric 
UMI approach. c, Errors are then corrected using the homotrimer correction 
method. d, Percentage of CMIs that are correctly sequenced and then error 
corrected using homotrimer correction across Illumina, PacBio and ONT 
sequencing platforms. Experiments for Illumina and ONT were performed in 
triplicate, whereas PacBio sequencing was conducted as a single run. Parameters 
for simulations: sequencing error rate 0.001, length of UMI 8, PCR cycles 10 and 
PCR error rate 0.000001 e, Barcode assignment using homotrimer barcodes 
before and after majority vote correction. f, Percentage of genes with an accurate 
CMI count following increased PCR cycles of the same sequencing library. 
Data shown in the figure are from one single run. g, log10 CMI counts plotted 
for each transcript pre- and postmajority vote correction. Each dot represents 
an individual transcript (the ground truth count for each transcript should be 
equal to 1, any counts above this are indicative of an error). The data in this figure 
are representative of one sample in f. h, Percentage of genes with an accurate 

CMI count following 20 PCR cycles then using ONT sequencing and counting 
using UMI-tools, TRUmiCount correction and homotrimer error correction. 
i–l, RM82 sarcoma cells were treated with DMSO or SGC-CLK-1 for 24 hours and 
then sequenced using the PromethION platform. i,j, Scatter plot of the log2 fold 
changes obtained from randomly collapsing each sequenced trimer UMI and 
then applying UMI-tools deduplication versus the log2 fold changes obtained 
from homotrimer UMI correction and counting for genes (i) and transcripts (j). 
Red points indicate the overlapping significant genes and/or transcripts and blue 
points indicate genes and/or transcripts that were disconcordantly significantly 
differentially expressed. DE, differential expression. k, TLE5 transcript 
read counts showing the expression for DMSO and SGC-CLK1 following 
the application of UMI-tools or homotrimer correction. l, FRG2 transcript 
read counts showing the expression for DMSO and SGC-CLK1 following the 
application of UMI-tools or homotrimer correction. For k and l, three replicates 
are shown for each condition. d,e,f and h, Error bars represent standard deviation 
(s.d.) from three independent experiments.
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cycles using ONT’s PromethION platform (Supplementary Fig. 19). Our 
results show that by incorporating homotrimers within the barcode 
region an increase, albeit low (~15%), in the numbers of cells recovered 

was achieved (Fig. 2h). Monomeric UMI deduplication resulted in over 
300 differentially regulated transcripts between the 20 and 25 cycle 
libraries (Fig. 2i and Supplementary Table 4). On the contrary, the 
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application of homotrimer correction did not reveal any significantly 
differentially regulated transcripts. Transcripts with high counts after 
25 cycles of monomer UMI correction saw a reduction when subjected 
to homotrimer UMI correction (Fig. 2j), demonstrating the robustness 
of homotrimer UMIs to remove errors.

Our research highlights the importance of accurate UMI quan-
tification in sequencing, endorsing homotrimer UMIs to improve 
read count precision. Homotrimers notably mitigate PCR-induced 
UMI errors, optimizing molecule count sequencing. Although they 
extend the oligonucleotide length, their suitability for long-read 
sequencing—unrestricted by read length—outweighs this limita-
tion, offering substantial benefits for studies requiring rigorous UMI  
quantification.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Methods
Cell lines and reagents
The 5TGM1, Jurkat and RM82 cell lines were cultured in complete 
Roswell Park Memorial Institute medium. All parental cell lines were 
tested twice per year for mycoplasma contamination and authen-
ticated by short tandem repeat during this project. For cell culture 
experiments, SGC-CLK-1 (Structural Genomics Consortium) inhibi-
tor was incubated with cells for 24 h. Dimethylsulfoxide (DMSO) was 
used as a negative control. Jurkat (TIB-152) were purchased from the 
American Type Culture Collection, while 5TGM1 cells were a kind gift 
from C. Edwards (University of Oxford) and RM82 cells were gifts from  
N. Athanasou and B. Hassan, as part of the EuroBioNet network.

Oligonucleotide synthesis
Homotrimer phosphoramidites were purchased as a custom product 
from Metkinen Chemistry and reverse homotrimer phosphoramid-
ites were a custom synthesis product from Chemgenes. Solid-phase 
phosphoramidite oligonucleotide synthesis on Toyopearl HW-65S 
resin (Tosoh Biosciences, catalog no. 0019815) was performed by 
ATDBio as described previously13, in the 5′–3′ direction (using reverse 
amidites), using a method adapted from ref. 20. The sequence of 
the capture oligonucleotide is as follows: Bead-5′-[spacer]-TTTTTT
TAAGCAGTGGTATCAACGCAGAGTACJJJJJJJJJJJJNNNNNNNNTTTTT
TTTTTTTTTTTTTTTTTTTTTTTTT-3′, where ‘J’ indicates a nucleo-
tide trimer block added via split-and-pool synthesis using reverse 
monomer phosphoramidites. ‘N’ indicates a degenerate trimer 
nucleotide (added using an equimolar mixture of the four reverse 
timer phosphoramidites). [spacer] is hexaethylene glycol added 
using DMT-protected hexaethylene glycol phosphoramidite and all 
the other bases are standard (monomeric) DNA bases added using 
reverse phosphoramidites. AAGCAGTGGTATCAACGCAGAGTAC is  
the PCR handle.

Before oligonucleotide synthesis, capping was performed 
to reduce the initial loading of hydroxyl groups on the beads, by 
suspending the resin in a 1:1 mixture of Cap A (tetrahydrofuran:lut
idine:acetic anhydride 8:1:1) and Cap B (tetrahydrofuran:pyridine:
1-methylimidazole 8:1:1) at room temperature for 30 min. Oligonu-
cleotide synthesis was then performed using an ABI 394 DNA syn-
thesizer, using a modified 1 μmol synthesis cycle (with an extended 
coupling time of 5 min for monomer bases and 10 min for trimer 
bases. The capping step was omitted for the trimer bases in the UMI 
region and the poly-T region). The barcode was generated using 12 
split-and-pool synthesis cycles. Before the first split-and-pool syn-
thesis cycle, beads were removed from the synthesis column, pooled 
and mixed, and divided into four equal aliquots. The bead aliquots 
were then transferred to separate synthesis columns before three 
consecutive couplings with monomers reverse amidites. This process 
was repeated 11 times. Following the final split-and-pool cycle, the 
beads were pooled, mixed and divided between four columns, ready 
for the next part of the synthesis. An equimolar mixture of the four 
trimer phosphoramidites was used in the synthesis of the degenerate 
UMI (poly(N)) region, and (monomeric) T reverse amidite was used 
for the poly(T) tail. After oligonucleotide synthesis, the resin was 
washed with acetonitrile and dried with argon before deprotection 
in aqueous ammonia (room temperature for 17 h followed by 55 °C, 
6 h). The beads were then washed with water followed by acetonitrile 
and dried with argon gas.

Template switch oligonucleotide was synthesized using 
standard phosphoramidites: 5′-AAGCAGTGGTATCAACGCAGAG 
TNNNNNNNNNNGAATrGrGrG-3′. The oligonucleotides were 
PAGE purified and shipped lyophilized. Primers containing 
CMIs were synthesized by Sigma Aldrich using the following 
sequences polyA oligonucleotide: 5′-AAGCAGTGGTATCAAC 
GCAGAGTACNNNNNNNNNNT T T T T T T T T T T T T T T T T T T T T T 
TTTTTTTT-3′.

Generating bulk homotrimer UMI-tagged cDNA
Total mesenger RNA (mRNA) was isolated using a Quick-RNA Mini-
Prep kit (Zymo), following the manufacturer’s protocol. The RNA 
sample quality and quantity was measured using an RNA screen tape 
on the TapeStation (Agilent). cDNA synthesis was performed with 
modification to the SMART approach21. An oligo(dT)-containing 
adapter containing a homotrimer 30-base DNA sequence and a 
SMART primer sequence was used to initiate a reverse transcriptase 
reaction. Briefly, RNA was denatured at 72 °C for 2 min and then 
reverse transcribed with Maxima H minus reverse transcriptase 
(2,000 U) in a total volume of 50 μl with the buffer, 1 mM dNTPs, 
2 mM dithiothreitol and 4% Ficoll PM-400. The reaction was per-
formed for 90 min at 42 °C and then the enzyme was heat inactivated 
at 80 °C for 5 min. The library was then purified using 0.8× SPRI 
bead (Beckman Coulter) cleanup followed by PCR using KAPA HiFi 
master mix for 20 cycles (unless otherwise stated)20, using SMART 
PCR primer (AAGCAGTGGTATCAACGCAGAGT) before being puri-
fied using SPRI beads. To achieve a high concentration of cDNA 
the input was subjected to up to 30 cycles of PCR amplification 
followed by a second cleanup. Optionally, 10 ng of PCR product 
was subjected to 12 further cycles of PCR using primers that con-
tained trimer sample barcodes (Supplementary Table 1). Finally, 
cDNA was quantified using a TapeStation (Agilent Technologies) 
using a DNA high-sensitivity D5000 tape before being split for 
Illumina or Oxford Nanopore library generation. To reduce PCR 
artifacts and improve sequencing return, we performed PCR using 
the primer 5-PCBio-TACACGACGCTCTTCCGATCT for a further  
3–5 cycles of PCR.

ONT bulk RNA sequencing (RNA-seq) library preparation and 
sequencing
A total of 1,200 ng of purified cDNA was used as a template for 
ONT library preparation. We used SQK-LSK-109, SQK-LSK112 and 
SQK-LSK114 (also referred to as ONT latest kit14 chemistry) ligation 
sequencing kits, following the manufacturer’s protocol. Samples 
were sequenced using a minION device using R9.4.1 (FLO-MIN106D) 
or R10.4 (FLO-MIN112) flow cells. Barcoding using the Native Bar-
coding Amplicon kit (EXP-NDB104) was performed for RM82 cells 
treated with DMSO or CLK1 inhibitor treatment. These samples were 
sequenced using the PromethION sequencing platform on R9.4.1 
FLO-PRO002 flow cells at the Deep Seq facility at the University of  
Nottingham.

PacBio bulk RNA-seq library preparation and sequencing
A total of 1,200 ng of purified cDNA was used as a template for PacBio 
library preparation and sequencing at the Centre for Genomic 
Research at the University of Liverpool (https://www.liverpool.ac.uk/
genomic-research/technologies/next-generation-sequencing/). cDNA 
was end-repair and A-tailed with T4 polynucleotide kinase (New Eng-
land Biolabs). The sequencing library was prepared using the SMRT-
bell Express Template Prep Kit v.2.0 following the standard protocol. 
Sequencing was then performed on a Sequel IIe using a Sequel IIe 
SMRT Cell 8M ion CCS mode, following the standard protocol. CCS 
reads were generated using CCS v.6.3.0 (https://github.com/PacificBio-
sciences/ccs) using default settings.

Illumina bulk RNA-seq library preparation and sequencing
Purified cDNA was used as an input for the Nextera XT DNA 
library preparation kit (New England Biolabs). Library qual-
ity and size was determined using a TapeStation (Agilent Tech-
nologies) High Sensitivity D1000 tape and then sequenced on 
a NextSeq 500 sequencer (Illumina) using a 75-cycle High Output 
kit using a custom read1 primer (GCCTGTCCGCGGAAGCAGTG 
GTATCAACGCAGAGTAC). Read1 length was 30 bp long and read2  
length was 52 bp long.
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ONT bulk RNA-seq analysis
We performed base calling on the raw fast5 data to generate fastq 
files using Guppy (v.6.4.8) (guppy_basecaller –compress-fastq -c 
[cfg file] -x ‘cuda:0’) in graphical processing unit (GPU) mode from 
ONT running on a RTX3090 graphics card. The fastq data were 
processed using a custom pipeline ‘pipeline_count’ written using 
cgatcore22 and included within the TallyTriN repository. Briefly, the 
quality of each fastq file was evaluated using the fastqc toolkit23 and 
summary statistics were collated using Multiqc24. We then identi-
fied the polyA associated UMI sequence by searching for the polyA 
region and reverse complementing the read if it did not appear in 
the correct orientation. The 30 bp UMI was identified upstream of 
the SMART primer by pattern matching for GTACTCTGCGTTGA-
TACCACTGCTT. The set coverage method for removing homo-
trimer methods was then applied for UMI demultiplexing; if the 
UMI contained more than five errors then the read was removed. 
The demultiplexed UMI sequence was then added to the read 
name. Next, the template switch oligo (TSO)-associated UMI was 
identified using the SMART primer sequence AAGCAGTGGTATC 
AACGCAGAGTAAT. The 30 bp UMI sequence was first subjected 
to error correction or removed from the read, depending on the 
number of UMI errors detected. Subsequently, the corrected UMI, 
if applicable, was appended to the read name, enhancing the accu-
racy and use of the data. Both the TSO and polyA associated UMIs 
and primer sequences were removed from the read sequence. For 
transcript level analysis, the fastq file was then mapped against the 
transcriptome using minimap2 (v.2.25) with the following settings: 
-ax map-ont -p 0.9 --end-bonus 10 -N 3. The resulting .sam file was 
then sorted and indexed using samtools25. A custom script, in which 
pysam (v.0.21.0) was used to parse the output .sam file, was then 
used to add the transcript name to the XT tag of the samfile for down-
stream counting by homotrimer deduplication or UMI-tools. For gene 
level analysis, the fastq data were mapped using minimap2 using 
the following setting: -ax splice -k 14 --sam-hit-only --secondary=no 
--junc-bed. The resulting .sam file was then sorted and indexed fol-
lowed by feature annotation using featurecounts (v.2.0.1)26 using 
the following settings to generate an annotated .bam file: feature-
Counts -a (gtf) -o (output) -R BAM. This .bam file was then used for 
downstream counting by UMI-tools or homotrimer correction. The 
reference transcriptome and genomes used for the analysis were 
hg38_ensembl98 and mm10_ensembl88. The resulting count tables 
were then used for differential gene expression analysis, which was 
performed using DESeq2 v.1.40.2 (ref. 27) within the R statistical  
framework v.4.3.1.

Illumina bulk RNA-seq analysis
The data were processed using a custom cgatcore28 (v.0.6.15) written 
pipeline ‘pipeline_illumina’. Briefly, the UMIs contained in read1 were 
corrected based on homotrimer complementarity or were removed 
from the analysis depending on a set error threshold. The paired fastq 
files were then mapped using hisat2 (v.2.2.1)29 before features being 
counted using featureCounts30 (v.2.0.3) using the following commands: 
featureCounts -a (gtf) -o (output) -R BAM. The resulting XT tagged 
.bam file was then used for downstream counting using homotrimer 
deduplication or UMI-tools. The resulting count tables were then used 
for differential gene expression analysis, which was performed using 
DESeq2 v.1.40.2 (ref. 27) within the R statistical framework v.4.3.1

UMI-tools deduplication
Following gene or transcript level mapping, the UMI was extracted 
from the read. Since UMI-tools was not designed to correct homotrimer 
sequences, we collapsed the UMI into a single nucleotide sequence by 
selecting the first base within each of the individual trimers. Reads were 
then deduplicated using the directional method using the command: 
umi_tools count –per-gene –gene-tag=XT.

Homotrimer set coverage deduplication
Following gene or transcript level mapping, the UMI was extracted from 
the read and collapsed into single nucleotide sequence using the major-
ity vote approach where applicable or resolve inconsistencies through 
a combinatorial optimization scheme otherwise. Briefly, reads were 
first filtered to exclude reads in which there were more than three errors 
in the UMI sequence. For UMI sequences where each trimer contains at 
least two identical nucleotides, a majority vote was then performed to 
collapse the trimer into a monomer. If at least one trimer is inconclusive 
and contains three different nucleotides, we no longer treat each UMI 
sequence independently when collapsing trimers into monomers. 
Instead, we select one of the nucleotides in each trimer block to achieve 
maximal consistency between duplicates, that is to minimize the num-
ber of distinct collapsed UMI sequences. We formulate this task as a set 
cover problem for each gene as follows31. Let S be the set of sequenced 
homotrimer UMIs of a given gene (in a given cell). For s ∈ S  let C(s) 
denote the set of collapsed UMIs that can be obtained by combining 
single nucleotides that occur in each trimer block of s. Each such col-
lapsed sequence c ∈ C (s), for some s ∈ S, can explain potentially multiple 
homotrimer UMIs s′ if c is also contained in C (s′). We therefore include 
one subset Sc ⊆ S for each c ∈ ⋃{s∈S}C (s) that contains all s ∈ S for which 
c ∈ C(s). The collection of sets Sc of smallest cardinality that together 
include (‘cover’) all sequenced UMIs in S therefore corresponds to the 
smallest set of collapsed UMIs that explain all s ∈ S. To find this smallest 
set of collapsed UMIs, we use a greedy algorithm that starts from the 
empty set and in each iteration adds the subset Sc (that is, collapsed UMI 
c) that explains the largest number of yet unexplained sequenced UMIs. 
The solution returned by this algorithm is guaranteed to be within a 
logarithmic factor of the optimal solution31. In our experiments, the 
solution of the greedy approach was identical to the optimal solution 
for more than 90% of the genes. We computed the optimal solution 
using an integer linear programming approach, where decision varia-
bles model the inclusion or exclusion of sets Sc and linear inequalities 
enforce each sequenced UMI to be covered by at least one such set, that 
is to be explained by at least one collapsed UMI.

Settings for simulated UMIs
We simulated UMI data of length 30 (ten blocks of nucleotide trimers) 
to test the accuracy of our UMI correction methodology by using the 
ResimPy tool. We mimicked the PCR amplification and sequencing 
errors seen with ONT sequencing, as this sequencing methodology suf-
fers from indels and base calling errors more frequently than PacBio or 
Illumina sequencing. UMIs were generated following an approach that 
was first described by UMI-tools11. Briefly, we simulated homotrimer 
blocks of UMIs at random, with an amplification rate (-ampl_rate) rang-
ing between 0.8 and 1.0 and then simulated PCR cycles so that each UMI 
was duplicated to the probability of amplification. PCR errors were 
then randomly added and assigned new probabilities of amplification. 
A predefined number of UMIs were randomly sampled to simulate 
sequencing depth and sequencing errors introduced with a specified 
probability. Finally, errors were detected by assessing the complemen-
tarity of homotrimers across the full UMI sequence. If no errors were 
detected, then the homotrimers were collapsed into single nucleotide 
bases. However, if errors were identified, then collapsing into single 
nucleotides was performed using the most common nucleotide within 
the trimer. If a most common nucleotide could not be determined, then 
a single nucleotide was selected at random for collapsing. The follow-
ing values were used within our simulations. Sequencing depth 400; 
number of UMIs 50 (-umi_num); UMI length 12 (-umi_len); PCR error 
rate 3.6 × 10−6 (-seq_err); error rate 1 × 10−1–1 × 10−7 and number of PCR 
cycles 12 (-pcr_num); permutation tests 50 (-perm_num).

ResimPy: simulating PCR artifacts in UMI-attached reads
We developed ResimPy for simulating UMI-attached reads. The total 
number of reads m(i+1) at PCR cycle i + 1 comes from two sources: reads 
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that are PCR amplified and those that are not. This can be described by 
a Galton–Watson branching process32–34 as follows

m(i+1) = m(i) + n(i) (1)

Here, n(i) is the number of reads to be amplified, determined by an 
amplification rate α. According to Chen et al.32, n(i) follows a binomial 
distribution Binom(m(i),α). The n(i) reads to be amplified are randomly 
selected from the set {1, 2,… ,m(i)} without replacement. This ensures 
that each read has an equal chance of being amplified. The same pro-
cess applied for every two adjacent PCR cycles.

To simulate PCR errors, we implemented another Galton–Watson 
branching process. The total number of base errors u(i+1) at PCR cycle 
i + 1 is modeled by:

u(i+1) = u(i) + v(i) (2)

Here, v(i) represents the number of base errors to be synthesized 
at PCR cycle i + 1. Following Rabadan et al.35, v(i) is generated using a 
negative binomial distribution NBinom(r,q) . Here q represents the 
probability of a base being successfully synthesized, which is derived 
by subtracting the base error probability Pe from 1 (that is 1 − Pe). The 
variable r is determined by the product of the number of successfully 
synthesized bases calculated by q × t(i) the positions of these v(i) PCR 
errors were randomly chosen from set {1, 2,… , t(i)}, where t(i) represents 
the total number of bases to be synthesized at PCR cycle i + 1. Finally, 
the base at each error sequence position was substituted by one of the 
remaining three types of bases, drawn from a discrete uniform distribu-
tion U(1, 3), where 1 and 3 represent the indices of the first and the third 
remaining bases, indicating that each one gains an equal chance for 
substitution. We use the same method to simulate sequencing errors. 
While simulation data provide some evidence for UMI deduplication 
performance, it is important to note that simulations can be biased. 
Therefore, we complement our simulations with experimentally 
derived data using our CMI approach described below.

CMI and error evaluation in bulk sequencing
To measure the error rate and evaluate the accuracy of our 
UMIs following library preparation and sequencing, we syn-
thesized a common sequence (GGGAAACCCTTTGGGCCC 
TTTAAACCCTTT) in replacement of a UMI to our polyA capture oli-
gonucleotide. Following sequencing the CMI sequence was identified 
upstream of the SMART primer by pattern matching for GTACTCT-
GCGTTGATACCACTGCTT. The accuracy of our CMI was then deter-
mined by comparing the expected synthesized sequence to the 
extracted CMI sequence. The percentages of CMI that show full comple-
mentarity with the expected sequence were counted and the numbers 
of errors were determined for the inaccurate CMIs.

Comparison between UMI-tools and homotrimer CMI 
deduplication methods
After mapping the reads to the reference genome at the gene level, we 
processed the data using two different strategies: UMI-tools and homo-
trimer deduplication. For homotrimer deduplication, we used the full 
length of the CMI sequence, while for UMI-tools we collapsed the CMI 
into a monomer by selecting the first base for each trimer block. The 
inclusion of the CMI sequence to our reads provides an experimental 
ground truth with which to evaluate the accuracy of each deduplica-
tion strategy. To assess the accuracy of the final deduplicated counts, 
we compared them to the expected ground truth CMI gene count of 1.

10X Chromium library preparation
We prepared a single-cell suspension using JJN3 and 5TGM1 cells using 
the standard 10X Genomics chromium protocol as per the manufactur-
er’s instructions. Briefly, cells were filtered into a single-cell suspension 

using a 40 μM Flomi cell strainer before being counted. We performed 
10X Chromium library preparation following the manufacturer’s pro-
tocol. Briefly, we loaded 3,300 JJN3:5TGM1 cells at a 50/50 split into a 
single channel of the 10X Chromium instrument. Cells were barcoded 
and reverse transcribed into cDNA using the Chromium Single Cell 3′ 
library kit and get bead v.3.1. We performed ten cycles of PCR amplifica-
tion before cleaning up the library using 0.6× SPRI Select beads. The 
library was split and a further 20 or 25 PCR cycles were performed using 
a biotin oligonucleotide (5-PCBio-CTACACGACGCTCTTCCGATCT) and 
then cDNA was enriched using Dynabeads MyOne streptavidin T1 mag-
netic beads (Invitrogen). The beads were washed in 2× binding buffer 
(10 mM Tric-HCL pH 7.5, 1 mM EDTA and 2 M NaCl), then samples were 
added to an equi-volume amount of 2× binding buffer and incubated at 
room temperature for 10 min. Beads were placed in a magnetic rack and 
then washed twice in 1× binding buffer. The beads were resuspended in 
H2O and incubated at room temperature and subjected to long-wave 
ultraviolet light (~366 nm) for 10 min. Magnetic beads were removed, 
and library was quantified using the Qubit High-sensitivity kit. Libraries 
were then prepared before sequencing.

Drop-seq library preparation
Single-cell capture and reverse transcription were performed as pre-
viously described20. Briefly, JJN3 and 5TGM1 cells (20:80 ratio) were 
filtered into a single-cell suspension using a 40 μM Flomi cell strainer 
before being counted. Cells were loaded into the DolomiteBio Nadia 
Innovate system at a concentration of 310 cells per μl. Custom syn-
thesized beads were loaded into the microfluidic cartridge at a con-
centration of 620,000 beads per ml. Cell capture was then performed 
using the standard Nadia Innovate protocol according to the manu-
facturer’s instructions. The droplet emulsion was then incubated for 
10 min before being disrupted with 1H,1H,2H,2H-perfluoro-1-octanol 
(Sigma) and beads were released into aqueous solution. After several 
washes, the beads were subjected to reverse transcription. Before 
PCR amplification, beads were treated with ExoI exonuclease for 
45 min. PCR amplification was then performed using the SMART 
PCR primer (AAGCAGTGGTATCAACGCAGAGT) and cDNA was subse-
quently purified using AMPure beads (Beckman Coulter). The library 
was split and a further 20 or 25 PCR cycles20 were performed using a 
biotin oligonucleotide (5-PCBio-TACACGACGCTCTTCCGATCT) and 
then cDNA was enriched using Dynabeads MyOne streptavidin T1 
magnetic beads (Invitrogen). The beads were washed in 2× binding 
buffer (10 mM Tric-HCL pH 7.5, 1 mM EDTA and 2 M NaCl) then sam-
ples were added to an equi-volume amount of 2× binding buffer and 
incubated at room temperature for 10 mins. Beads were placed in a 
magnetic rack and then washed with twice with 1× binding buffer. 
The beads were resuspended in H2O and incubated at room tem-
perature and subjected to long-wave ultraviolet light (~366 nm) for 
10 min. Magnetic beads were removed, and library was quantified 
using the Qubit High-sensitivity kit. Libraries were then prepared  
for sequencing.

Bulk and single-cell library preparation and ONT sequencing
A total of 500 ng of single-cell PCR input was used as a template for 
ONT library preparation. Library preparation was performed using 
the SQK-LSK114 (kit V14) ligation sequencing kit, following the manu-
facturer’s protocol. Samples were then sequenced on either a Flongle 
device or a PromethION device using R10.4 (FLO-PRO114M) flow cells.

10X analysis workflow
We performed base calling on the raw fast5 data to generate fastq files 
using Guppy (v.6.4.8) (guppy_basecaller –compress-fastq -c dna_r10.4_
e8.1_sup.cfg -x ‘cuda:0’) in GPU mode from ONT running on a RTX3090 
graphics card. To process the 10X chromium data, we wrote a custom 
cgatcore pipeline (https://github.com/cribbslab/TallyTriN/blob/ 
main/tallytrin/pipeline_10x.py)22. We first determined the orientation 
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of the reads and if a poly-T sequence was detected we reverse com-
plemented the read. Next, we identified the barcode and UMI based 
on the pairwise alignment of the sequence AGATCGGAAGAGCGT 
and AAAAAAAAA and identified the sequence between these align-
ments. We next removed reads that were greater or equal to 28 bp 
and isolated the barcode as the first 16 bp and the UMI the following 
12 bp. The barcode and UMI sequence were then appended to the 
name of the fastq read using the underscore delimiter. Next, to remove 
barcode errors we parsed the barcodes from each read in the fastq 
file and then selected the most common barcode sequences using 
the number of expected cells in our library as the threshold. Next, 
for every read in the fastq file we then identified the closest barcode 
match for each read, allowing for two mismatches. Mapping was 
performed using minimap2 (v.2.25)36, with the following settings: 
-ax splice -uf –MD –sam-hit-only –junc-bed and using the reference 
transcriptome for human hg38 and mouse mm10. The resulting .bam 
file was sorted and indexed before adding the transcript name to 
the XT tag within the .bam file. Counting was then performed using 
UMI-tools –method=directional before being converted to a mar-
ket matrix format. Raw transcript expression matrices generated by 
UMI-tools count were processed using R/Bioconductor (v.4.3.0), the 
raw market matrix files were imported into R using bustools (v.0.42.0) 
and the Seurat37,38 package (v.4.3.0). Transcript matrices were cell-level 
scaled and log-transformed. The top 2,000 highly variable genes were 
then selected based on variance stabilizing transformation that was 
used for principal component analysis. Clustering was performed 
within Seurat using the Louvain algorithm. To visualize the single-cell 
data, we projected data onto a uniform manifold approximation and 
projection (UMAP)39.

Drop-seq analysis workflow
We performed base calling on the raw fast5 data to generate fastq 
files using Guppy (v.6.4.8) (guppy_basecaller –compress-fastq -c 
dna_r10.4_e8.1_sup.cfg -x ‘cuda:0’) in GPU mode from ONT running 
on a RTX3090 graphics card. To process the drop-seq data, we wrote a 
custom cgatcore pipeline (https://github.com/cribbslab/TallyTriN)22. 
We followed the workflow previously described for identifying bar-
codes and UMIs using scCOLOR-seq sequencing analysis13. Briefly, 
to determine the orientation of our reads, we first searched for the 
presence of a polyA sequence or a poly-T sequence. In cases where the 
poly-T was identified, we reverse complemented the read. We next 
identified the barcode sequence by searching for the polyA region 
and flanking regions before and after the barcode. The trimer UMI 
was identified based on the primer sequence GTACTCTGCGTT at the 
TSO distal end of the read, allowing for two mismatches. Barcodes 
and UMIs that had a length less than 48 base pairs were filtered. To 
conduct monomer-based analyses, a random base was selected from 
each homotrimer in the UMI or CMI and collapsed into a monomer. 
Homotrimer UMI correction was performed following mapping using 
minimap2 (v.2.25)36. Mapping settings were as follows: -ax splice -uf 
–MD –sam-hit-only –junc-bed and using the reference transcriptome 
for human hg38 and mouse mm10. The resulting .sam file was sorted 
and indexed using samtools25. For monomer UMI, counting was per-
formed using UMI-tools before being converted to a market matrix 
format. For homotrimer UMI correction, the counting was performed 
using the script greedy.py within the TallyTriN repository. Raw tran-
script expression matrices generated by UMI-tools count and greedy.
py were processed using R and Bioconductor (v.4.3.0) and custom 
scripts were used to generate barnyard plots showing the proportion 
of mouse and human cells. Transcript matrices were cell-level scaled 
and center log ratio transformed. The top 3,000 highly variable genes 
were then selected based on variance stabilizing transformation that 
was used for principal component analysis. Clustering was performed 
within Seurat using the Louvain algorithm. To visualize the single-cell 
data, we projected data onto a UMAP39.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Sequencing data have been deposited to the Gene Expression Omnibus 
under the accession number GSE218899. All analysis was performed 
using hg38 ensembl 98 version.

Code availability
Source data are provided with this paper. All custom pipelines  
used within this analysis are available on GitHub (https://github.
com/cribbslab/TallyTriN). ResimPy (v.0.0.1) is available on GitHub  
(https://github.com/cribbslab/resimpy).
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Supplementary Figure 1: UMI errors from sequencing or PCR increase UMI coun=ng. 
a, Ideal UMI collapsing example: This figure illustrates an ideal scenario where transcripts (two 
blue and two green) are labelled with unique molecular iden?fier barcodes (UMIs) and PCR 
amplifica?on is performed. Due to PCR amplifica?on bias, longer transcripts have a lower 
amplifica?on rate than shorter ones. The sequenced reads are then grouped together based 
on the set of UMIs and then collapsed within those groups to match the original number of 
transcripts. b, Increased UMI coun?ng occurs due to errors: In real situa?ons, errors occur 
during PCR amplifica?on and sequencing, which can lead to increased UMI counts. As shown 
in this example, an error occurs within one of the UMIs which results in a higher count of 
unique UMIs than the actual number of input transcripts in the final library. This phenomenon 
can affect downstream analysis and should be taken into considera?on otherwise they will 
lead to false posi?ves when performing differen?al expression analysis.  
  



 
 
 

 
 
Supplementary Figure 2: Improved UMI deduplica=on using homotrimer blocks of 
nucleo=des. 
a, Homotrimer blocks of nucleo?des are used to synthesise UMIs, which enables efficient 
error correc?on through a majority vote between the trimer blocks. This approach does not 
require knowledge of the original oligonucleo?de, and the trimers are resilient to base pair 
errors (example 1) and inser?ons/dele?ons (example 2). Errors are removed before collapsing 
the sequence to a single-base and then performing downstream analyses. b, We simulated 
UMIs with increasing error rates were modelled the correc?on of trimer sequences using the 
majority vote approach as described in a. To handle homotrimer errors more robustly, we 
subsequently developed a new model, which is described within the methods sec?on 
“homotrimer correc?on”. Error bars in b are ploVed but not visible because the CVs are very 
small over three different repeated simula?ons. Error bars represent the mean and +/- 
Standard Devia?on.  
  



 

 
Supplementary Figure 3: Comparison of homotrimer and monomer UMI for 
demul=plexing.  
We evaluated the effec?veness of homotrimer UMIs versus monomer UMIs for 
demul?plexing by simula?ng base UMIs with increasing error rates and calculated the fold 
change between the ground truth and the output aZer computa?onal error correc?on is 
applied. Our findings demonstrate that the performance of correc?ng homotrimer UMIs using 
the set coverage approach outperform that of uncorrected monomer UMIs and correc?ng 
monomer UMIs using computa?onal methods. PCR cycles were set to 12. Sequencing depth 
was set to 400. The number of ini?al molecules was set to 50. The length of homotrimer UMIs 
was set to 36bp. Ne represents the number of sequenced molecules. Nt represents the 
number of ini?al molecules. Error bars are s.d. of 3 independent simula?ons. 
 



 
Supplementary Figure 4: The majority vote method is improved using a set coverage 
solu=on. 
 
a, A cumula)ve plot showing the frac)on of genes that have been collapsed to a common molecular 
iden)fier (CMI) count of less than or equal to the value shown on the x-axis by either the majority vote 
approach or the set cover-based op)miza)on method. A CMI refers to a common homotrimer 
sequence aFached to every captured RNA molecule, when demul)plexed without errors, the RNA 
count will equal 1, any errors will inflate the RNA molecule count. The data used for this approach is 
ONT sequencing using R9.4 and LSK110 chemistry. Only genes with at least 2 mapped reads were 
considered (n=3,428). Maximal UMI counts returned by majority vote and set cover op)miza)on are 
245 and 72, respec)vely. b, A scaFer plot comparing UMI counts obtained using the majority vote 
approach (x-axis) to counts returned by the greedy set cover algorithm (y-axis). Only genes with at 
least 2 mapped reads were considered (n=3,428). To simplify visualiza)on, we excluded genes with 
large majority counts (x,y) = (83, 22), (91, 24), (96, 31), (106, 32), (113, 33) and (245, 72). 
 
 
  



 
 
 
 

 
 
Supplementary Figure 5: Empirical evalua=on of transcript coun=ng with Common 
Molecular Iden=fiers (CMIs).  
 
a, An Ideal CMI collapsing example: In this scenario, transcripts (two blue and two green) are 
labelled with a common molecular iden?fier barcode (CMIs; labelled as red) and amplified via 
PCR. During transcripts grouping, all transcripts are labelled with the same common sequence. 
Therefore, following demul?plexing, each transcript should receive a count of one for every 
instance of detec?on. b, Increased counts result from the introduc?on of errors: This figure 
illustrates the effect of the errors within the CMI sequence. Any error introduced during PCR 
or sequencing creates a new CMI (labelled as yellow), resul?ng in an increase in transcript 
counts. This allows empirical evalua?on of the effect of errors on the coun?ng of transcripts, 
providing valuable insights into the accuracy of transcript quan?fica?on.  
 
 
  



 
 
Supplementary Figure 6: Read quality control following sequencing by Illumina, PacBio 
and ONT. 
The read quality outputs from FASTQC for Illumina, PacBio and ONT (old chemistry: LSK110 
R9.4.1 and new kit14 chemistry LSK114 R10.4). Error bars are defined by FASTQC and the 
central red line is the median value, the yellow box represents the inter-quar?le range (25-
75%), the upper and lower whiskers represent the 10% and 90% points, the blue line 
represents the mean quality. 
 
 
 
  



 
Supplementary Figure 7: Quality score following sequencing by Illumina, PacBio and ONT. 
The Qscore of each read as a rela?onship between the number of errors measured within 
the CMI, sequencing across Illumina, PacBio and ONT (old chemistry: LSK110 R9.4.1 and new 
kit14 chemistry LSK114 R10.4) technologies. a, Qscore represented as a density plot for the 
different sequencing plakorms. b, The Qscore rela?onship with the number of errors 
detected within the CMI across the different sequencing plakorms. The Error bars are 
ploVed so that the central line is the median value, the box represents the inter-quar?le 
range (25-75%), the upper and lower whiskers represent the 10% and 90% points, the points 
represent the extreme outliers. 
 



 
Supplementary Figure 8: Percent of correctly sequenced CMIs across Illumina and ONT 
sequencing plaXorms 
The leZ panel shows the individual repeats that were performed following Illumina 
sequencing of a homotrimeric CMI tagged cDNA. Each run was performed independently and 
sequenced using separate flow cells. The right panel shows the same cDNA sequenced using 
the ONT plakorm, across three separate minION flow cells. 
 
 
 
  



 
Supplementary Figure 9: Evalua=on of CMI accuracy across Illumina, PacBio and legacy 
ONT chemistry. 
The accuracy of sequencing was evaluated for legacy ONT chemistry, we measured the 
percentage of CMIs with a Hamming distance between the expected and the sequenced CMI. 
The results are shown for Illumina, PacBio, and ONT legacy chemistry sequencing. Data from 
Illumina and PacBio is the same as in Fig. 1h. Data from Illumina and ONT were performed in 
triplicate, whereas PacBio was performed as a single run. 
 
 
  



 
 
Supplementary Figure 10: Improved basecalling accuracy using super accuracy guppy 
basecalling for ONT technology.  
Percent of CMIs that are correctly sequenced and then error corrected using homotrimer 
correc?on using either high accuracy guppy basecalling or super accuracy basecalling for the 
LSK114 chemistry and R10.4 flow cells. 
  



 
 
Supplementary Figure 11: CMI counts pre and post majority vote corrected.  
The leZ panel shows a violin plot of the counts for each transcript pre majority vote correc?on 
following 15, 20, 25 and 30 PCR cycles. The right-hand panel shows the CMI counts post 
majority vote correc?on. The ground truth count for each transcript should be equal to 1, any 
counts above this indicate an error.  



 

 
Supplementary Figure 12: The indel frequency and accuracy of coun=ng using different CMI 
approaches. 
a, The percent of CMIs with at least one indel were calculated for a bulk homotrimer CMI 
sequencing experiment using both High accuracy (HAC) and Super accuracy basecalling (SUP). 
b, The percent of CMIs with at least one indel were calculated for a bulk homotrimer CMI 
sequencing following 15, 20, 25 and 30 PCR cycles. c, This figure represents the percentage of 
genes with accurately quan?fied CMI aZer applying ONT sequencing. Three strategies were 
compared: (1) coun?ng using a monomer-synthesised CMI and subsequent applica?on of 
UMI-tools, (2) employing a homotrimer-synthesised CMI with a selec?on of the first base in 
the trimer block and (3) using the homotrimer error correc?on. Error bars are s.d. of 3 
independent experiments. 
  



 
 
Supplementary Figure 13: Analysis of differen=al gene expression in RM82 Ewing’s 
sarcoma cells treated with DMSO and CLK-1 inhibitor and sequenced using the ONT 
plaXorm. 
a, A PCR plot showing the variance for cells treated with either DMSO or CLK-1 inhibitor. b, A 
volcano plot showing the log2 fold change and -log10 padj values for cells treated with DMSO 
or CLK-1 inhibitor, analysed without the inclusion of a UMI during analysis. d, A volcano plot 
showing the log2 fold change and -log10 padj values for cells treated with DMSO or CLK-1 
inhibitor and analysed using the homotrimer corrected UMI. These results demonstrate the 
u?lity of homotrimer correc?on in iden?fying differen?ally expressed genes and removal of 
false posi?ve transcripts. Differen?al expression was determined using DESEq2 using a Wald 
test and a p adjusted value of < 0.05 was used as a threshold. 
 
  



 
 
 

 

 
Supplementary Figure 14: Analysis of differen=al gene expression in RM82 Ewing’s 
sarcoma cells treated with DMSO and CLK-1 inhibitor and sequenced using the Illumina 
plaXorm.  
a, A PCR plot showing the variance for cells treated with either DMSO or CLK-1 inhibitor. b, 
This scaVer plot compares the log2 fold changes obtained from randomly collapsing each 
sequenced trimer UMI with those obtained from homotrimer UMI correc?on. c, A volcano 
plot showing the log2 fold change and -log10 padj values for cells treated with DMSO or CLK-
1 inhibitor, analysed without the inclusion of a UMI during analysis. d, A volcano plot showing 
the log2 fold change and -log10 padj values for cells treated with DMSO or CLK-1 inhibitor and 
analysed using the homotrimer corrected UMI. These results demonstrate the u?lity of 
homotrimer correc?on in iden?fying differen?ally expressed genes and removal of false 
posi?ve genes. Differen?al expression was determined using DESEq2 using a Wald test and a 
p adjusted value of < 0.05 was used as a threshold. 



 
 
Supplementary Figure 15: Mean variance plot of transcripts showing samples treated with 
DMSO and CLK1. 
The mean variance plots show that the transcript expression is correlated, with the higher 
the transcript expression the higher the variance. The data follows a nega?ve binomial 
distribu?on. Two transcripts ploVed in Fig. 1m-n are ploVed as red and orange points. 
 
 
 
  



 
Supplementary Figure 16: GO analysis of the differen=ally expressed genes between 
DMSO and CLK-1 inhibitor. 
Go analysis was performed for data shown in Fig. 1l that corrected using UMI-tools (blue 
bars) and differen?ally regulated genes following homotrimer correc?on (orange bars).  
 
 
  



 

 
Supplementary Figure 17: Quality metrics for 10X chromium single-cell sequencing 
libraries amplified using 20 and 25 cycles of PCR. 
The number of counts, features and number of UMIs for 10X Chromium libraries PCR amplified 
for 20 cycles (a) and 25 cycles (b). Each dot represents a single-cell following filtering. c, The 
log10 genes per UMI ploVed as a density. 
  



 
 
 
Supplementary Figure 18: The number of discordant bases across the full length of the 
homotrimer UMI 
The number of errors per read between the sequenced CMI and the ground truth CMI 
following 30 and 35 PCR cycles. Error bars are s.d. of 3 independent experiments. 



 
Supplementary Figure 19: Number of features and UMAP clustering for the integrated 
analysis of homotrimer drop-seq UMIs following 20 and 25 cycles of PCR. 
a, The number of features detected within the mouse and human cells for monomer (leZ 
panel) and homotrimer (right panel) UMIs following 20 and 25 PCR cycles. UMAP plots 
showing the integra?on, clustering and annota?on of libraries amplified following 20 and 25 
PCR cycles for monomer (b) and homotrimer (c) UMIs. d, UMAP plots showing the expression 
of a non-significant gene ENSMUST0000037023 in monomers (leZ panels) and homotrimer 
corrected (right panels) following 20 and 25 cycles of PCR. Even though this gene is not 
considered significantly different between 20 and 25 cycles in both the monomer and 
homotrimer datasets, there is generally an overall increase in background counts following 25 
cycles of PCR in the monomer dataset that is not apparent within the homotrimer dataset. 
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